A review of the current technical activities in the CERN openlab

Sverre Jarp, 7 May 2008 CERN openlab CTO sverre.jarp@cern.ch

General

- Grid Interoperability
- Database Competence
- Network and Security
- Platform Competence
- Summer student programme
- Conclusions

Please note that there are too many activities in openlab to mention them all. (See our Annual Report for more exact information)

Contributions in openlab II

From Partners

- In-cash resources (for hiring)
- Company staff
- In-kind resources

From CERN

- Technical environment
- Technical manpower
- Supervisory resources
- Management resources
- Communications resources

openlab Technical Team

CERN openlab Staff and Fellows 12

- Gyorgy Balazs
- Student (CERN)

Fellow (ProCurve)

Staff (ProCurve)

- Havard Bjerke
- Fellow (Intel) Fellow (EDS)

Fellow (HP)

- Daniel Filipe
- Xavier Gréhant
- Milosz Hulboj
- Ryszard Jurga
- Andreas Hirstius Staff (Intel)
- Andrzej Nowak Fellow (EU/CERN)
- Eva Dafonte Perez Staff (Oracle)
- José M. D. Perez Fellow (HP)
- Anton Topurov Fellow (Oracle)
- Dawid Wojcik
- Fellow (Oracle)
- ----THUR MANY AND A STATE

CERN manpower contribution

IT staff involved (part/full time) 16

Ian Bird

- Dirk Düllmann
- François Flückiger
- David Foster
- Maria Girone
- Eric Grancher
- François Grey
- Denise Heagerty
- Sverre Jarp
- J-M Jouanigot
- Chris Lampert
- Mats Möller
- Alberto Pace
- Séverine Pizzera
- Markus Schulz
- Jamie Shiers
- and others

- LCG group leader
- DM group
- openlab manager
 - CS group leader
 - DM group
 - DES group
 - Comm. Team
 - Security section
 - openlab CTO
 - CS group
 - DES group
 - DES group leader
 - **DM Group leader**
 - Admin. Assistant
 - **GD** Group leader
 - **GS** Group leader

openlab II structure

Management	Platform Competence	Commu
	Grid Interoperability	
	Database Competence	nications
	Networking and Security	

Grid Monitoring

CERN openlab

Started with an analysis of the (then) current situation

- Grid Monitoring Landscape
 Q2 2007, CERN openlab / EDS Workshop
- New Monitoring Management Views

- Developed GridMap Prototype
- Presented at EGEE'07
- Documentation, Releases
- Variants: ServiceMap, ...

Context sensitive detailed information

"Click" links to underlying tools Drill down features

MSG

- MSG: 'Messaging System for the Grid'
 - Objective: Integrate different monitoring tools using a reliable infrastructure

Publishe

- Work started in Sept. 07
 - Extensive testing of ActiveMQ, an open-source message broker
 - Prototype of different solutions (mainly Python)
 - Currently OSG and Gridview production data is being published and consumed

Consumer

HP Tycoon overview

CERN openiab

- A dynamic Grid infrastructure using a market-driven approach
- Joint development with HP Labs where:
 - HP Labs did the porting of Tycoon to SLC4 and recent versions of Xen
 - CERN openlab developed the integration with EGEE in order to deploy CEs and WNs on demand

Tycoon-gLite integration

Extensive scalability tests performed

- Some issues concerning "large-scale" security and trust
 - e.g. who runs the bank!
- Recently, the implementation was enhanced in order to:
 - Deploy different kinds of nodes more easily (i.e. Storage Elements)

Grid Scheduling Survey

X.Gréhant's PhD:

- Synthesis on Grid Scheduling
- In-depth analysis of VO management, resource access
 - EGEE, OSG, NorduGrid, Naregi, etc.
- Direct scheduling in a VO
 - glideCAF, Cronus, GlideInWMS
 - AliEn2, DIRAC, Panda
 - DIANE
- In collaboration with grid developers at CERN
- Paper submitted to the Journal of Supercomputing

Grid Resource Simulation

Simulating such an environment

- Level-lab:
 - Simulates the environment a VO gets on the grid
 - Evaluates performance of allocation algorithms
 - Development done jointly with summer student (2007)

WLCG sites on Level-Lab visualization module

- Status
 - 3000 lines of code, 5000 of unit tests
 - Simple model working
 - Successive refinements in progress (job and resource profiles accuracy)

Xen (Virtualization benchmarks)

Run on para-virtualized and hardwareassisted virtualization platforms

point to strengths and weaknesses in hypervisors

OS Farm (for Virtual Images)

- VM images generated using a layered cache
 - Core layer is instantaneous, using copy-on-write
 - Supports Debian and Red Hat based distributions
- Contextualization customizes images according to deployment context
- Web service interface w/ example Java client
- XML image descriptions

Repository About Log Status Simple request Virtual Appliances request Advanced request						
OS Farm dynamically generates OS images, and "virtual appliances" for use with Xen VMs. To create an image, enter a name for the image and select a "Class" and software packages if needed. Click "Create image", and the image will be created and put in the <u>repository</u> . If you check the "Download image upon creation" checkbox, the image will be downloaded when the image creation is finished.						
If you do not enter a "Name", the image will be named after the md5 checksum of the image configuration parameters. If an image with the exact same parameters exists in the repository, it will not be recreated and can be downloaded immediately.						
If you want to use wget, then here is an example url: "http://www.cern.ch/osfarm/create?name=&download=on&class=SLC4&arch=i386&filetype=_tar&group=core&group=base&package=glite=BDII"						
Please allow a few minutes for the image to be created.						
Name						
Synchronous						
Class SLC4 🔽						
Architecture 1386						
Filetype tar						
Create Image						

Content Based Image Transfer (CBT)

- Most VM images are relatively similar
 - Transfer only the delta between images
- Efficiency close to hypothetical max (infinite CPU power)
- Integration with OS Farm

H. K. F. Bjerke, D. Shiyachki, Andreas Unterkircher, Irfan Habib, Tools and Techniques for Managing Virtual, Machine Images, submitted to 3rd Workshop on Virtualization in High-Performance Cluster and Grid Computing (VHPC '08)

Events and outreach highlights

Oracle OpenWorld, San Francisco, October 2007

- Dirk Düllmann and Paul Otellini (Intel CEO) during keynote speech
- CERN presentations

Database downstream capture and network optimizations

- Downstream capture to de-couple Tier 0 production databases from destination or network problems
 - source database availability is highest priority
- Optimizing redo log retention on downstream database to allow for sufficient re-synchronisation window
 - we use 5 days retention to avoid tape access
- TCP and Oracle protocol optimisations yielded significant throughput improvements (factor 10)
 - network latency to some sites 300 ms(!)

Oracle Streams Rules Optimizations

- **ATLAS** Streams Replication: filter tables by prefix
- Rules on the capture side caused more overhead than on the propagation side
- Oracle Streams complex rules: rules with conditions that include LIKE or NOT clauses or FUNCTIONS
- Complex rules converted to simple rules

Oracle Streams Monitoring

- Requested features:
 - Streams topology
 - Status of streams connections
 - Error notifications
 - Streams performance (latency, throughput, etc.)
 - Other resources related to the streams performance (streams pool memory, redo generation)
- Architecture:
 - "strmmon" daemon written in Python
 - End-user web application <u>http://oms3d.cern.ch:4889/streams/main</u>
- 3D monitoring and alerting integrated with WLCG procedures and tools

Oracle RDBMS highlights

Oracle RDBMS

- Beta testing of 11g and 10.2.0.4
 - Workload Capture and Replay testing with PVSS and Castor Name Server workloads
 - IO Resource Manager Calibration testing
- PVSS RAC scalability work continued, presented at UKOUG'07
- Configuring and testing Oracle RAC in XEN virtualized environment
- Performance testing on new quad core processors
- 11g rpm testing and deployment

Oracle performance benchmarks

3000000

System performance, Oracle logical iops, row length 2000 bytes

~15% more performance \rightarrow

2500000 2 5140 (dual core) 2000000 second Operations per 1500000 2 E5345 (quad core 65nm. 8MB cache) 1000000 ■ 2 E5410 (quad core 45nm, 12MB 500000 cache) Ω 16 2 8 4 Parallelism degree

- Test and validate performance of new platforms
- Oracle RDBMS performance comparison between (all dualsocket platforms):
 - E5140 (2.33Ghz, 4MB cache, "Woodcrest" DC), current deployment platform for CERN's Linux RACs
 - E5345 (2.33Ghz, 8MB cache, "Clovertown" QC)
 - E5410 (2.33Ghz, 12MB cache, "Harpertown" QC)

Oracle Enterprise Manager

- Oracle Enterprise Manager
 - Migration to high availability architecture on Linux
 & presentation at European EM user group
 - Upgrade to 10.2.0.4
 - Increased use of user defined metrics, custom reporting, and security policies
 - Big win: Databases monitored for backup activity
 alert if time limit elapsed
 - Joint presentation with Configuration Management team at Oracle OpenWorld

A. Dechert, IT-Service Management at CERN and How It Can Be Improved by the Usage of Oracle Enterprise Manager, Diploma Thesis, Karlsruhe University of Applied Sciences 2008

Networking

CINBAD project

Codename: "CINBAD"

- CERN Investigation of Network Behaviour and Anomaly Detection
- Project Goal
- "To understand the behaviour of large computer networks (10'000+ nodes) in High Performance Computing or large Campus installations to be able to:
 - Detect traffic anomalies in the system
 - Be able to perform trend analysis
 - Automatically take counter measures
 - Provide post-mortem analysis facilities "

CINBAD deliverables

- The project is tentatively divided into three phases, each with a particular set of investigation activities and deliverables:
 - Data collection and network management
 - Data Analysis and algorithm development
 - Performance and scalability analysis

M. M. Hulboj and R. E. Jurga Packet Sampling for Network Monitoring, December 2007

Highly Scalable Architecture

Rich database for investigative data mining

Intel 10 Gb networking

- With the first generation cards, we successfully prototyped high-throughput disk servers, but ...
 - Very high cost
 - Reasonable throughput required jumbo-frames
 - MTU 9KB, rather than 1.5KB (Ethernet standard)
- Production disk servers (w/1Gb NICs) have now reached their throughput/capacity limit
- Today, we know that 2nd generation cards are much better
 - Native speed (9.49 Gbps) reached with standard MTU
 - Driver support native in Linux kernel
 - Reasonable cost, especially with CX4 cards

From Multi to Many

- The HEP "high throughput" computing model is ideally suited:
 - Independent processes can run on each core, provided that:
 - Main memory is added
 - Bandwidth to main memory remains reasonable
 - Testing, so far, has been very convincing
 - Woodcrest, Clovertown, Harpertown; Montecito
- In November 2006, Intel's European Quad core launch took place in the Globe

Multi-threading activities

- Aim: Evangelize/teach parallel programming
- Two workshops arranged w/Intel in 2007
 - Topics: OpenMP, MPI, TBB, Intel tools
 - 2 days, 5 lecturers, 45 participants, 20 people oversubscribed
 - Next workshop: 29/30 May 2008
- Licenses for the Intel Threading Tools (and other SW products) made available
- Collaboration with PH/SFT research project
 - Geant4 parallelization prototype
 - Parallel minimization version (ROOT)

ROOT in a Nutshell

- A OO data handling and analysis syste
- Development started in 1995
- Currently about 2MLOC++
- Widely used in the world of HEP and beyon
- All LHC experiments depend on it

Herbert Cornelius and Hans-

Joachim Plum from Intel

Fons [\] Rademakers from CERN

Collaboration on parallelism

CBM experiment's High Level Trigger Code

- Originally ported to Cell processor
- Tracing particles in a magnetic field
 - Embarrassingly parallel code
- Re-optimization on Intel Core systems
 - Step 1: used SSE vectors instead of scalars
 - Operator overloading allows seamless change of data types, even between primitives (e.g. float) and classes
 - Step 2: added multithreading (via TBB)
 - Enable scaling with core count

I.Kisel/GSI: "Fast SIMDized Kalman filter based track fit" http://www-linux.gsi.de/~ikisel/reco/CBM/DOC-2007-Mar-127-1.pdf

Performance Monitoring

A joint project with S.Eranian/(ex-HP Labs)

- Aim: Ensure that his performance monitoring interface (*perfmon2* – originally developed for Itanium) gets integrated into the Linux kernel for use on ALL hardware platforms
- Our contributions:
 - Intense testing on Core 2 and Itanium
 - Increased sophistication in *pfmon* (user tool) for comprehensive symbol resolution
 - Graphical user interface: gpfmon

- Also: Courses on architecture and performance
 - First one held on March 2008

S. Jarp et al.: Perfmon2: A leap forward in Performance Monitoring, CHEP2007, Sept. 2007

Recent pfmon example (ATLAS)

ATLAS Athena 64-bit mode

results for [7913<-[7907]] (/afs/cern.ch/sw/lcg/external/Python/2.5/slc4 amd64 gcc</pre> /afs/cern.ch/atlas/software/builds/nightlies/dev/AtlasCore/rel 2/InstallArea/share/k # total samples : 13881105 # total buffer overflows : 6777 # # event00 # %self code addr symbol counts %Cum 4356424 31.38% 31.38% 0x000003061511930 __ieee754_log</lib64/tls/libm-2.3.4. 7.03% 38.42% 0x00002ac24924a9b0 G4MuPairProductionModel::ComputeDMic 976234

double)</afs/cern.ch/atlas/offline/external/geant4/volume5/geant4.8.3.patch02.atlas(

868803 6.26% 44.68% 0x00002ac2491f7bf0 G4VRangeToEnergyConverter::RangeLogS const*, double const*, double, double, double, int)</afs/cern.ch/atlas/offline/exter 64/lib/Linux-g++/libG4processes.so>

710397 5.12% 49.79% 0x000000306150e370 __ieee754_exp</lib64/tls/libm-2.3.4. 613669 4.42% 54.21% 0x00002ac2491eba40 G4ProductionCutsTable::ScanAndSetCou G4Region*)</afs/cern.ch/atlas/offline/external/geant4/volume5/geant4.8.3.patch02.atl

397489 2.86% 57.08% 0x00002ac247da8650 G4PhysicsLogVector::FindBinLocation(const</afs/cern.ch/atlas/offline/external/geant4/volume5/geant4.8.3.patch02.atlas02. 367929 2.65% 59.73% 0x0000003061513470 ieee754 log10</lib64/tls/libm-2.3.

Benchmarking

Contributing to Benchmarking Working Group

- Aim: Identify most relevant (and convenient) benchmark for acquisitions
 - Currently: Parallel SPEC2000Int (based on gcc –O2 –fPIC –threads)

TOP500 runs

- Aim: Profit from the large acquisitions done for LHC to report the best possible number for TOP500
 - In reality: Perform a solid "burn-in" test for new systems
- Last Spring: 8.329 Tflops with 340 dual-core dual-socket servers
 - #115 in June 2007, #233 five months later (!)
- New submission for June:
 - 19.69 Tflops w/470 quad-core DS servers
- Working closely with Intel (Sergey Shalnov)
 - Using his "hybrid" version of High Performance Linpack

Thermal control

Help optimize power/thermal efficiency in the CERN Computer Centre

- Good collaboration with Michael Patterson, Intel's top expert
 - Enclosing cold aisles for better separation of cold/hot air
 - Add "thermal penalties" in all acquisitions
 - Collaborate on project for new facility
- Paper on power efficiency completed
- Project to understand thermal characteristics of each server component
 - Processors (frequencies and SKUs); Memory (type and size); Disks; I/O cards; Power supplies

New processor activity

- Concerns both multi-core and many-core!
- Aim: Enable usage of all cores and reduce memory foot-print
 - Multi-core:
 - Get ready for Nehalem with SMT technology
 - QPI and Integrated Memory Controller
 - DP: 4 cores x 2 threads x 2 sockets
 - Cost-effective (?) MP servers:
 - » 8 cores x 2 threads x 4 sockets
 - Will the HEP community start using HW threads?
 - Also: Study implications of AVX (Advanced Vector Extensions)
 - 256bits: Can HEP software make efficient use of fourvector operations??

1	2	0	5
0	0	0	0
0	3	0	6
0	0	4	7

New language activity

- Visit and seminar by A.Ghuloum/Intel
 - Overview of Ct (Oct 2007)
- Now we are in the process of reviewing the specifications (v. 1.4)
 - Promising data parallel extension to C++
 - Need to understand how well Ct-kernels can be added to existing C++ frameworks
 - Also, which platforms are being targeted

Waiting for first release

Compiler project

- Aim: Improved performance of jobs by influencing the back-end code generator
 - Based on our millions of lines of C++ source code
 - Also: Test suites for performance and regression testing
- **2008**:
 - Target further improvements in execution time
 - Emphasis on additional options on top of O2
 - Expand to more complex benchmarks
 - Multithreading/TBB + SSE
 - Compiler expert from Intel visiting (Sept./Oct.)
 - Compare Intel 11.0 beta with gcc 4.3.0
- Project is active since the start of openlab I
 - With particular strength in in-order execution

HP/Intel openIab Blade System

- All our testing and development require substantial x86 h/w resources
 - Next step:
 - Install an expandable HP Blade System w/128 Intel Xeon Harpertown processors
 - Great test bed for:
 - Benchmarking, Performance monitoring, Compiler testing, Virtualization tests, Grid testing, Simulator runs (AVX, etc.), New language testing,
 - Also for hands-on during workshops and teaching.

Summer students

S. Jarp is the new programme coordinator

12 students this year Several co-funded by openlab partners

- Lecture 1: Server hardware
- Lecture 2: Linux kernel
- Lecture 3: Oracle RDBMS
- Lecture 4: Computer Security
- Lecture 5: **Compilers**
- Lecture 6: Benchmarking
- Lecture 7: Networking
- Lecture 8: Virtualization
- Lecture 9: LCG
- Lecture 10: **gLite**

- A. Hirstius/CERN
- J. Iven/CERN
- B. Engsig/Oracle
- S. Lopienski/CERN
- L. Pollock/ U. Delaware
- S.Jarp/CERN
- M. Swany/ U. Delaware
- H.Bjerke/CERN
- L. Poncet/CERN
- M. Schulz/CERN

Conclusion and outlook

- LHC Computing is complex and poses many challenges
- Rich openlab programme between partners and CERN IT groups
 - Important to ensure that both sides find value in the collaboration
 - Best when results have broad applicability
- Joint investment in (wo-)manpower is vital
- We are not perfect (by any means), but openlab is currently delivering more results than ever before
 - To the great satisfaction of everybody
- We are actively preparing openlab III